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What is Computer Vision and Machine Intelligence?

I The ability for a machine to interpret 3−D information from a 2−D
image

I Current focus:
I Pose Estimation

I Eigenspace decomposition algorithm development
I Determining the spatial orientation of known object

I Applications:
I Automated assembly
I Automated part inspection
I Human-Robot interaction
I National security

Ph.D. Final Examination, July, 7 2009 3



How is this done??? - Training

Ph.D. Final Examination, July, 7 2009 4



Too Much Data - Eigenspace Decomposition

I Dimensionality reduction
I Exploit correlation between images
I Represent by a smaller subspace

I Advantages
I Computationally efficient on-line
I Works well on a variety of applications
I Strictly appearance based

I No feature extraction
I No edge detection

I Drawbacks
I Background clutter/occlusion
I Large number of training images required
I Variation in illumination
I Computationally expensive off-line
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Preliminaries

I Gray-scale images X ∈ [0, 1]h×v

I Row-scanned f = vec(XT )
I Sets of related images X = [f1, · · · , fn]
I Subtract the mean image to get X̂ (unbiased image data matrix)

I SVD(X̂ ) = ÛΣ̂V̂ T

I Û-left singular vectors (eigenimages)
I Σ̂-diagonal matrix of singular values
I V̂ -right singular vectors

I eigenimages are the eigenvectors of X̂ X̂T = ÛΣ̂2Û
I singular values measure how “important” each eigenimage is
I right singular vectors measure how aligned each image is with the

corresponding eigenimage
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Introduction to Pose Estimation

I Compute M = ÛT
k X

I M → discrete approximation to a 1-dimensional manifold in
k-dimensional space (consisting of n points)

I On-line computation consists of dot products (P = ÛT
k fnew) and a

closest point search in high-dimensional space
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General Idea

I Compute Mk = ÛT
k X̂

I Compute P = ÛT
k fnew

I Search the eigenspace

I Biggest issue is computing the subspace Ûk

I Computationally prohibitive when m and n are large
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First Part of Dissertation - Pose Estimation (Ambient
Illumination)

Objective

I Accurately estimate the first k principal eigenimages Ûk of X̂

Fully general 3-dimensional pose estimation

I Correlation in three-dimensions
I Representative sampling (SO(3))
I Spherical harmonics in conjunction with Wigner-D matrices
I Exploit spherical correlation

I Eigenspace decomposition in transform domain to estimate Û
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Quality Measures

Energy recovery

ρ(X̂ , ˜̂Uk) =
∑k

i=1||˜̂uT
i X̂ ||2

||X̂ ||2F

∆ρ(X̂ , ˜̂Uk) = ρ(X̂ , ˜̂Uk)− ρ(X̂ , ˜̂Uk−1)

Two subspaces span the same space - Subspace criterion (SC)

SC =
√

1
k∗
∑k

i=1

∑k∗

j=1(˜̂uT
i ûj)2

Rotation between subspaces - Residue

∆ = min
Q
||Ûk − ˜̂UkQ||F

I Compute SVD( ˜̂UT
k Ûk) = UcΣcV

T
c

I ∆2 = 2
(
k −

∑k
i=1 σci

)
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Spherical Sampling

I Sampling on SO(3) f = f(ξp, γr )
I ξp: p ∈ {0, . . . , a− 1} is the unit vector
I βp ∈ (0, π) - angle of co-latitude
I αp ∈ [0, 2π) - angle of longitude

I parameterization of the sphere

I r ∈ {0, . . . , b − 1} is the r th planar rotation
γr ∈ [0, 2π) at sample p

I Hierarchical Equal Area isoLatitude Pixelization (HEALPix)
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Harmonic Analysis on S2

f (ξp) ∈ S2 - Spherical harmonic transform

f (ξp) =
lmax∑
l=0

∑
|m|≤l

f m
l Y m

l (ξp)

f m
l = 4π

n

n−1∑
p=0

f (ξp, γr )Y m∗
l (ξp)
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Spherical Harmonics

Spherical harmonics

Y m
l (ξp) = κm

l Pm
l (cos(βp))e jmαp

Pm
l (cos(βp)) associated Legendre polynomial

κm
l =

√
2l+1

4π
(l−|m|)!
(l+|m|)! , |m| ≤ l < lmax
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Harmonic Analysis on SO(3)

Rotation of spherical harmonics

Λ(α, β, γ)Y m
l (α, β) = Y m

l (α′, β′) =
∑
|m|≤l Y

m
l (α, β)D l

mm′(α, β, γ)

I D l
mm′(α, β, γ) is the (2l + 1)× (2l + 1) Wigner-D matrix

D l
mm′(αp, βp, γr ) = e−imαpd l

mm′(βp)e−im′γr

I d l
mm′(βp) - Wigner’s small-d matrix (related to the Jacobi polynomials)

f (ξp, γr ) ∈ SO(3) - SO(3) harmonic transform

f (ξp, γr ) =
lmax∑
l=0

∑
|m|≤l

∑
|m′|≤l

f l
mm′D

l
mm′(ξp, γr )

f l
mm′ = 4π

a

a−1∑
p=0

b−1∑
r=0

f (ξp, γr )D l∗
mm′(ξp, γr )
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SO(3) Harmonic Power Spectra

I Observation (1)
I Low-frequency harmonics

I Consequence
I SVD of low freq. harmonics of

X̂ is a good estimate of SVD(X̂ )

I Observation (2)
I Transform is lossy

I harmonic images ≈ 1/2
samples

I Consequence
I 100% energy recovery not

possible (low pass filtered)
I Bad for compression
I Good for computational savings
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Algorithm Summary

Eigenspace Decomposition Algorithm on SO(3)

1 Compute the matrix F whose i th row is the SO(3) FFT of the i th row
of X̂ .

2 Form the matrix H whose columns are the ordered columns of F in
descending order according to their norm.

3 Set q = bNside(36N2
side − 1)[1− (1/2)N+1]c, with N=0 initially.

4 Construct the matrix Hq which is the matrix consisting of the first q
columns of H.

5 Compute SVD(Hq) = ˜̂Uq
˜̂Σq

˜̂V T
q .

6 If ∆ρ(X̂ , ˜̂Uq) > ε. Let N = N + 1 and repeat Steps 3 through 6.

7 Return ˜̂Uk such that ∆ρ(X̂ , ˜̂Uk) ≤ ε.
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Second Part of Dissertation - Variation in Illumination and
Pose

I Motivation:
I Most objects are illuminated from unknown directions
I Multiple sources of illumination can exist
I Eigenspace decomposition is appearance based

I Objects from the same pose under different illumination can appear
considerably different

I Contributions:

I Develop an algorithm to efficiently estimate the principle eigenimages
when variations in illumination and pose exist

I Evaluate the effects of multiple illumination sources
I Propose a method to efficiently estimate the pose of objects when

variations in pose and illumination conditions from multiple sources
exist
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Image Acquisition

I Treat S2 as an illumination sphere
I ξi : i ∈ {0, . . . , b − 1}

I i th illumination direction

I βi ∈ (0, π) - angle of co-latitude
I αi ∈ [0, 2π) - angle of longitude

I Sampling on S1 → f = f(ξi , r)
I r ∈ {0, . . . , a− 1} is the r th pose of the object

I Image data matrix:

X = [f(ξ0, 0), f(ξ1, 0), . . . f(ξb−1, 0),
f(ξ0, 1), f(ξ1, 1), . . . , f(ξb−1, 1), . . . ,
f(ξ0, a− 1), f(ξ1, a− 1), . . . , f(ξb−1, a− 1)]
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Harmonic Analysis on S2 - Revisited

Spherical harmonic transform (SHT) - f (ξi , r) ∈ S2 (for each r)

I f (ξi , r) =

pmax∑
p=0

∑
|q|≤p

f r
p,qYp,q(ξi )

I f r
p,q = 4π

b

b−1∑
i=0

f (ξi , r)Yp,q(ξi )

I f (ξi , r) is a single pixel in f(ξi , r)

I Expand all m pixels: frp,q ∈ Rm×1 is a harmonic image of degree p
and order q at pose r
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Single Illumination Source

Goals:
1 Verify that the set of harmonic images at each pose are band-limited

2 Verify that for most objects, orthonormalizing the truncated set of
harmonic images provides a good approximation to the eigenimages
as computed using the SVD directly

3 Reduce the dimensionality of the image data due to a change in
illumination at each of the a poses
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Test Data

I Test objects
I Each image 128× 128
I 90 different poses on S1

I 48 different illumination
directions (HEALPix)

I Reduce dimensionality to 9, 16,
25, and 36 harmonic images

I SVD for ground truth
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Evaluation

I 95% energy recovered by 9-D
subpspace (p = 2)

I low-pass filter removes specular
spikes

I 9-D subspace spans over 85% of
the same space

I 7-D subspace very comparable to
true SVD

I the 8th and 9th eigenimage
account for large specular spikes

I low-dimensional subspace
can’t recover these

I Conclusion: reducing the
dimensionality of the data in the
illumination dimension can be
efficiently done using a truncated
SHT
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Multiple Sources

I In most real world applications illumination may exist from multiple
sources and several directions

I Object properties
I Cast shadows
I Attached shadows
I Surface reflections (specularities)

I It has been shown that for single sources: [Epstein et al. 95]
I The first few eigenimages account for diffuse shading
I The next few account for specular lobes
I The higher order eigenimages account for sharp specular spikes

I Evaluate how well the 9-D subspace can recover information from
images of objects when multiple sources exist
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Multiple Sources - Test Data

I 10 different poses on S1

I 48 illumination directions
I Single source (SS)
I Two sources (DS)
I Three source (TS)
I All three sources were placed at

random on S2

I 9-D subspace using a single
source and HEALPix

I Energy recovery is still high and
distributions are tight for most
objects
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Empirical Evaluation

Reconstruction under three illumination directions and a fixed pose
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Reconstruction Error

I Treat each row-scanned
image as a point in
m-dimensional space

I Compute Euclidean
distance between
reconstruction and original
image

I Use this metric for all
480 test images (10
poses and 48
illumination conditions)

I Increased probability that
local specularities will be
illuminated
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Dimensionality Reduction in Illumination Dimension
(Graphical Interpretation)
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Dimensionality Reduction in Illumination Dimension

I Each harmonic image corresponds
to a spherical harmonic of degree
p and order q

I Construct:
X̂p,q = [f0

p,q, f
1
p,q, · · · , fa−1

p,q ]

for each (p, q) combination
I There will be nine such matrices

Each matrix X̂p,q is one-dimensionally correlated for each (p, q)
combination
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Correlation on S1 - Chang’s Algorithm

I Sample on lines of constant co-latitude

I Image data matrix X̂ - correlated on S1

I General idea behind Chang’s algorithm
I Majority of pixels change slowly throughout sequence
I Right singular vectors are approx. sinusoids
I Most of the energy in X̂ is concentrated around the low frequency

Fourier harmonics
I SVD of the p low frequency harmonics of FFT(X̂ ) ≈ Ûp
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Correlation on S1 - Example
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Dimensionality Reduction in the Pose Dimension (Chang’s
Algorithm)

Chang’s Algorithm

I Construct the matrix (ck = cos(2πk/n) and sk = sin(2πk/n))

H =

√
2

n


1√
2

c0 −s0 c0 −s0 · · ·
1√
2

c1 −s1 c2 −s2 · · ·
...

...
...

...
... · · ·

1√
2

cn−1 −sn−1 c2(n−1) −s2(n−1) · · ·


I Compute X̂H by means of the FFT

I Find the smallest number p such that ρ(X̂ ,Hp) ≥ µ

I Chang proved that: ρ(X̂ ,Up) ≥ ρ(X̂ , ˜̂Up) ≥ ρ(X̂ ,Hp)
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Recombination

I Recombine variation due to a change in both illumination and pose:
X̄ = [Z 0,0

j1
,Z 1,−1

j2
,Z 1,0

j3
,Z 1,1

j4
,Z 2,−2

j5
, · · · ,Z 2,2

j9
]

I Compute SVD(X̄ )
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Algorithm Summary

Eigenspace Decomposition Algorithm Summary

1 Use the SHT to compute the matrices X̂p,q for each r .

2 For each of the nine matrices X̂p,q, determine the smallest number ji
such that ρ(X̂T

p,q,Hji ) ≥ µt , where µt is the user specified energy
recovery ratio in the pose dimension, and i = 1, 2, . . . , 9 corresponds
to the i th matrix X̂p,q. Def. of H

3 Let Zp,q
ji

denote the matrix X̂p,qHji and construct the matrix

X̄ = [Z 0,0
j1
,Z 1,−1

j2
,Z 1,0

j3
,Z 1,1

j4
,Z 2,−2

j5
, · · · ,Z 2,2

j9
]. Note that the matrices

Zp,q
ji

can be efficiently computed using the FFT.

4 Compute the SVD of X̄ = ˜̂U ˜̂Σ ˜̂V .

5 Return ρ(X̂ , ˜̂Uk) ≥ µ. Where µ is the user specified energy recovery
ratio.
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Test Data

I Test objects
I Each image 128× 128
I 90 different poses on S1

I 48 different illumination
directions (HEALPix)

I 9-D subspace at each pose
(using SHT)

I µt = 0.95 and µ = 0.8
I SVD for ground truth
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Experimental Results

I Computational Savings
I Col. dim. of X̂ = 4230
I Col. dim. of X̄ never

exceeds 576
I Average speed-up =

214

I Quality of estimates

I Subspace dim ≈
SVD(X̂ )

I Difference in energy
recovery is comparable
for most objects

I Estimated eigenimages
are very comparable to
the true eigenimages
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Experimental Results Quality Measures
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How to Estimate the Pose of Objects with Unknown
Illumination Conditions?

I Recall: Mk = ˜̂UT
k X̂ and

P = ÛT
k fnew

I Denote each illumination
manifold by Ir

I Compute:
C = [c0, c2, . . . , ca−1],
where

cr =
1

b

b∑
i=1

I(i)
r

I C has significantly fewer
points than M
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Eigenspace Partitioning

1 Issue: C may not be
sufficient for accurate pose
estimation

I Search both Ir and
Ir+1 that bound P

2 Issue: The illumination
manifolds may intersect

I Compare pr+1
r + pr

r+1 to
the r th element in

∆C = [‖c2 − c1‖, ‖c3 − c2‖, · · · , ‖ca − ca−1‖, ‖c1 − ca‖]

I If ∆Cr ≥ (pr+1
r + pr

r+1) ∀r , then, Ir ∩ Ir+1 is empty

I Fortunately, the structure of the eigenspace can be analyzed off-line
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Analysis of Eigenspace Partitioning

I Object 1: No intersections
=⇒ accurate pose
estimation

I Variations due to a
change in pose are
larger than illumination

I Object 13: Several
intersections =⇒
inaccurate pose estimation

Objects

I Variations due to a
change in pose are NOT
larger than illumination

I The problem is ill-posed
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Estimation Accuracy

Evaluate how well the centroid manifold performs as compared to
traditional eigenspace search techniques

I 90 random but known poses on S1

I 270 test conditions

I Single source (SS)
I Two sources (DS)
I Three source (TS)
I All sources were placed at

random on S2

I 9-D subspace using a single
source and HEALPix

I n = 4320 evaluations using
traditional methods

I a + 2b = 186 evaluations using
proposed method
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Estimation Accuracy

I Single source using
exhaustive search
(measure of difficulty)

I Pose est. for some objects
is inherently difficult

I Proposed technique is
comparable to traditional
methods

I Multiple sources has little
effect on accurate
estimation
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Publications Resulting From Second Part

1 R. C. Hoover, A. A. Maciejewski, and R. G. Roberts, “Fast Eigenspace Decomposition for
Illumination Invariant Pose Estimation,” under review in IEEE Transactions on Systems,
Man, and Cybernetics B: Cybernetics, 2009.

2 R. C. Hoover, A. A. Maciejewski, R. G. Roberts, and R. P. Hoppal, “An Illustration of
Eigenspace Decomposition for Illumination Invariant Pose Estimation,” accepted to
appear in 2009 IEEE International Conference on Systems, Man, and Cybernetics, pp. -,
San Antonio, TX, Oct. 11-14, 2009.

3 R. C. Hoover, A. A. Maciejewski, and R. G. Roberts, “Designing Eigenspace Manifolds:
With Application to Object Identification and Pose Estimation,” accepted to appear in
2009 IEEE International Conference on Systems, Man, and Cybernetics, pp. -, San
Antonio, TX, Oct. 11-14, 2009.
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Conclusions

I First part: Eigenspace decomposition of spherically correlated images
I Proposed method of sampling - spherical (HEALPix)
I Proposed efficient algorithm for computing the eigenspace

decomposition of images correlated on S2 and SO(3)
I Spherical harmonics - Wigner-D matrices

I Shown significant computational savings
I Good quality of estimation

I Second part: Eigenspace decomposition of images with variations in
pose as well as illumination

I Reduce illumination dimension by using the SHT
I Evaluated the effects of multiple illumination sources

I Increased probability that a local specularity will be illuminated

I Reduce the pose dimension by using Fourier harmonics (Chang’s Alg.)
I Analyze the structure of the eigenspace manifold
I Proposed a technique to partition the eigenspace for efficient searching
I Multiple illumination sources have little effect on pose estimation for

most objects
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Thank you for your attention!!!
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Definition of the Real Fourier Matrix Back

H =

√
2

n


1√
2

c0 −s0 c0 −s0 · · ·
1√
2

c1 −s1 c2 −s2 · · ·
...

...
...

...
... · · ·

1√
2

cn−1 −sn−1 c2(n−1) −s2(n−1) · · ·


I Where ck = cos(2πk/n) and sk = sin(2πk/n)
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Quality Measures Back

Subspace criterion (SC)

SC =

√√√√ 1

k∗

k∑
i=1

k∗∑
j=1

(˜̂uT
i ûj)2

Residue between subspaces

∆ = min
Q
||A− BQ||F

I Compute SVD( ˜̂UT
k Ûk) = UcΣcV

T
c

I The matrix Qmin = UcV
T
c

I ∆2 = 2
(
k −

∑k
i=1 σci

)
I Normalized by

√
2k
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Objects Back
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